TD Nombres complexes

Formes algébrique et exponentielle

- BH6 Exercice 1 $\operatorname{\mathbb{Z}}$ A Identité du parallélogramme Soit $z,z'\in\mathbb{C}$.
 - 1. Montrer que $|z + z'|^2 + |z z'|^2 = 2(|z|^2 + |z'|^2)$.
 - 2. Représenter graphiquement les points O(0), A(z), B(z'), C(z+z') et le vecteur d'affixe z-z'. Interpréter géométriquement l'identité précédente.
- 99P **Exercice 2** Soient z_1, z_2, \ldots, z_n des nombres complexes.
 - 1. Montrer que

$$\left|\sum_{k=1}^{n} z_k\right|^2 = \sum_{k=1}^{n} |z_k|^2 + 2 \sum_{1 \le k < \ell \le n} \operatorname{Re}(z_k \overline{z_\ell}).$$

Que retrouve-t-on si $\forall i, z_i \in \mathbb{R}$?

2. On suppose les z_k non nuls et on pose $z_k = \rho_k e^{i\theta_k}$, où $\rho_k \in \mathbb{R}_+^*$ et $\theta_k \in [0,2\pi[$. Montrer que

$$\left| \sum_{k=1}^{n} z_{k} \right|^{2} = \sum_{k=1}^{n} \rho_{k}^{2} + 2 \sum_{k < \ell} \rho_{k} \rho_{\ell} \cos(\theta_{k} - \theta_{\ell}).$$

- 3. En déduire que $\left|\sum_{k=1}^n z_k\right| \leq \sum_{k=1}^n |z_k|$. Donner une CNS pour que $\left|\sum_{k=1}^n z_k\right| = \sum_{k=1}^n |z_k|$.
- T9R **Exercice 3** Que dire de nombres complexes $\lambda_1, \dots, \lambda_{2023} \in \mathbb{C}$, qui soient tous des racines 2023-ièmes de l'unité et vérifient

$$\sum_{i=1}^{2023} \lambda_i = 2023 \quad ?$$

G7R Exercice 4 $\ \ \$ Calculer $\sum\limits_{k=0}^{n}(-1)^k\binom{2n}{2k}$ et $\sum\limits_{k=0}^{n-1}(-1)^k\binom{2n}{2k+1}$.

Indication : Considérer $(1+i)^{2n}$

- PN7 Exercice 5
 - 1. Pour $z \in \mathbb{C}$, montrer que $|z| = \sup_{\theta \in \mathbb{R}} \operatorname{Re} \left(ze^{i\theta}\right)$.
 - 2. Soient $z_1,\dots,z_n\in\mathbb{C}$ des nombres complexes de parties réelles et imaginaires positives. Montrer que

$$|z_1 + \dots + z_n| \ge \frac{1}{\sqrt{2}} (|z_1| + \dots + |z_n|).$$

- YW9 Exercice 6 Soit $P = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ et $D = \{z \in \mathbb{C} \mid |z| < 1\}$. Montrer que l'application $z \mapsto \frac{z-i}{z+i}$ réalise une bijection de P sur D.
- PUP **Exercice** 7 \bigstar [X] Soit $(z_1, z_2, \dots, z_n) \in \mathbb{C}^n$, d'arguments $\theta_1, \theta_2, \dots, \theta_n$.
 - 1. Montrer que

$$\sup_{\theta \in \mathbb{R}} \sum_{k=1}^{n} |z_k| |\cos(\theta_k - \theta)| = \sup_{\varepsilon \in \{-1,1\}^n} \Big| \sum_{k=1}^{n} \varepsilon_k z_k \Big|.$$

Indication : On admettra que la borne supérieure de gauche est atteinte (théorème lié à la continuité).

2. Montrer que

$$\sum_{k=1}^{n} |z_k| \le \frac{\pi}{2} \sup_{\varepsilon \in \{-1,1\}^n} \Big| \sum_{k=1}^{n} \varepsilon_k z_k \Big|.$$

Indication: $\frac{2}{\pi}$ est la valeur moyenne de $|\cos|$.

3. Montrer que la constante $\frac{\pi}{2}$ est optimale.

Nombres $e^{i\theta}$

F9P Exercice 8 / Mettre sous forme pseudo-exponentielle les complexes suivants.

1.
$$\frac{1-e^{ix}}{1\perp e^{ix}}$$

2.
$$1 + e^{i\theta} + e^{2i\theta}$$

3.
$$\frac{1+i\tan x}{1-i\tan x}$$

- A4P Exercice 9 🖊 😭 Résoudre l'équation
 - 1. $z^6 + 1 = 0$
- 2. $(z+1)^4 = z^4$
- 3. $1 + z^n + z^{2n} = 0$
- 4. $z^4 = z + \overline{z}$

Indication : Se ramener à des racines n-ièmes de

- 92Z **Exercice 10** Déterminer les nombres complexes z tels que $z, \frac{1}{z}$ et 1-z aient le même module.
- CD3 Exercice 11 \square Soient $z, z' \in \mathbb{U}$, avec $zz' \neq -1$. Montrer que

$$\frac{z+z'}{1+zz'} \in \mathbb{R}.$$

XI2 Exercice 12 \bigstar [ENS] Soit $n \in \mathbb{N}^*$. Déterminer la somme μ_n des racines primitives n-ièmes de l'unité.

Indication: Appliquer le principe d'inclusion-exclusion.

Équations du second degré

0U5 **Exercice 13 ▮** ★ Factoriser le polynôme suivant sur ℂ.

1.
$$z^3 + (i+1)z^2 + (i+1)z + 1$$

2.
$$z^3 - 3z^2 + 3z + 7$$

Indication : *Commencer par trouver une racine évidente.*

YBW Exercice 14 $\operatorname{\mathbb{Z}}$ Soit $\theta \in \mathbb{R}$. Résoudre l'équation $z^4 + 2\cos\theta z^2 + 1 = 0$.

XYM Exercice 15 Soit $n \in \mathbb{N}^*$. Résoudre l'équation $(z^2+1)^n - (z+i)^{2n} = 0$.

Trigonométrie

VTW **Exercice 16** Soit $\theta = \frac{2\pi}{5}$ et $\omega = e^{i\theta}$. En écrivant $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$, montrer que $1 + 2\cos\theta + 2\cos(2\theta) = 0$. En déduire

ZJJ **Exercice 17** Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{3}$.

SJT Exercice 18 / Calculer

1.
$$\sum_{k=0}^{n} {n \choose k} \sin(kx)$$

2.
$$\sum_{k=0}^{n} \cos(x+ky)$$

3.
$$\sum_{k=0}^{n-1} \cos^2(kx)$$

2.
$$\sum_{k=0}^{n} \cos(x+ky)$$
 3. $\sum_{k=0}^{n-1} \cos^2(kx)$ 4. $\sum_{k=0}^{n} \sin \frac{\pi}{2^k} \sin \frac{3\pi}{2^k}$

JIT Exercice 19 / Factoriser

1.
$$-\sqrt{3}\cos t + \sin t$$

2.
$$\cos(\omega t + \varphi_1) + \cos(\omega t + \varphi_2)$$

yr9 **Exercice 20** Pour $p,q\in\mathbb{N}^*$, calculer $\int_0^{2\pi}\cos(pt)\cos(qt)\,\mathrm{d}t$.

Géométrie

EW9 Exercice 21 \square Trouver les nombres complexes z tels que les points d'affixes

- 1. z, z^2 et z^3 soient alignés.
- 2. z, z^2 et z^4 forment un triangle rectangle en z.

Indication: Se contenter d'une équation reliant x et y, qui décrit une hyperbole.

3. 1, z et iz soient alignés.

MD3 **Exercice 22** Donner sans justification la description géométrique de l'application $z \mapsto iz + 2$.

WL6 **Exercice 23** Soient A, B deux points distincts du plan et $\theta \in \mathbb{R}$. On munit le plan d'un repère orthonormé dans lequel A = (-a, 0)et B = (a, 0), pour $a \in \mathbb{R}_+^*$.

On note \mathcal{C} l'ensemble des points M tels que M=A, M=B, ou Angle $(\overrightarrow{MA}, \overrightarrow{MB}) \equiv \theta[\pi]$.

- 1. On note z l'affixe de M. Montrer que $M \in \mathcal{C}$ si et seulement si $(z-a)(\overline{z}+a)e^{-i\theta} \in \mathbb{R}$.
- 2. On pose z=x+iy. Déduire de la question précédente une équation de $\mathcal C$ de la forme $(x^2+y^2)\sin\theta+\cdots=0$.
- 3. En déduire que si $\theta \not\equiv 0[\pi]$, \mathcal{C} est un cercle. Préciser son centre et son rayon.

WP8 **Exercice 24** Soient $a, b, c \in \mathbb{U}$ tels que a + b + c = 0. Oue dire du triangle formé par les points images?

Indication: Traduire l'hypothèse a + b + c = 0 géométriquement, ou se ramener au cas où a = 1.

W6C Exercice 25

✓ CARACTÉRISATIONS DES TRIANGLES ÉQUILATÉRAUX Soient A, B, C trois points distincts du plan, d'affixes a, b, c.

- 1. Montrer que le triangle ABC est équilatéral si et seulement si $a + bj + cj^2 = 0$ ou $a + bj^2 + cj = 0$ où $j = e^{\frac{2i\pi}{3}}$.
- 2. Montrer que le triangle ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + bc + ca$.

G7D Exercice 26 ★

- 1. Soit z_1,\dots,z_n les sommets d'un n-gone régulier. Montrer que la famille $\left(z_i+(z_{i+2}-z_{i+1})\right)_{1\leq i\leq n}$ forme un n-gone régulier.
- 2. Montrer que pour $n \ge 5$, il n'existe pas de n-gone régulier dont les sommets sont à coordonnées entières. Qu'en est-il des cas n = 4 et n = 3?

Analyse

0L8 **Exercice 27** Soit $a \in \mathbb{R}^*$. Déterminer une primitive de $f: x \mapsto \frac{1}{x+ia}$.

- P9P **Exercice 28** Soit $a \in \mathbb{C}$. Déterminer les solutions complexes de l'équation $e^z = a$.
- RD3 Exercice 29 \checkmark Soit $\theta \not\equiv 0[\pi]$.
 - 1. En considérant la quantité $\sin\big((n+1)\theta\big)$, montrer que si la suite $(\sin n\theta)_{n\in\mathbb{N}}$ converge, il en va de même de la suite $(\cos n\theta)_{n\in\mathbb{N}}$.
 - 2. En déduire une contradiction.

GUH Exercice 30

- 1. Pour $n \in \mathbb{Z}$, calculer $\int_0^{2\pi} e^{in\theta} d\theta$.
- 2. Soit $P = \sum_{k=0}^{n} a_k X^k$ un polynôme à coefficients complexes, et $r \ge 0$.

 - a) Calculer, pour $k \in [\![1,n]\!]$, $\frac{1}{2\pi} \int_0^{2\pi} P(re^{i\theta}) e^{-ik\theta} \,\mathrm{d}\theta$. b) Justifier l'existence de $\sup_{z \in \mathbb{U}} |P(z)|$. Montrer que $\max_{i \in [\![0,n]\!]} |a_i| \leq \sup_{z \in \mathbb{U}} |P(z)|$.

NJM **Exercice 31** ★ Montrer qu'il n'est pas possible de partitionner le plan \mathbb{R}^2 en une réunion disjointe de cercles de rayon strictement

KM8 Exercice 32 \bigstar Étudier, en fonction du premier terme $u_0 \in \mathbb{C}$, la convergence d'une suite (u_n) vérifiant $\forall n \in \mathbb{N}, u_{n+1} = u_n^2$.